3.9 Calculation example of combined spring
Table 12-2-23
Items | Unit | Formulas and Data | ||||||||||||||||||
Original condition | Minimum working load P1 Maximum working load Pn Working range h Load properties Spring Type End Type Spring Material |
N N mm |
P1=340 Pn=900 h=10 Impact load Class II Tighten and grind both ends together Carbon Spring Wire Grade C |
|||||||||||||||||
Parameter calculation | Maximum working load of outer and inner springs Pn1,Pn2 | N | Pn1=(5/7)Pn=5/7*900=643 Pn2=Pn-Pn1=900-643=257 |
|||||||||||||||||
Minimum working load of outer and inner springs P11,P12 | N | P11=(5/7)P1=5/7*340=243 P12=P1-P11=340-243=97 |
||||||||||||||||||
Required stiffness of outer and inner springs p ‘ | N/mm | P1’=(Pn1-P11)/h=(643-243)10=40
P2’=(Pn2-P12)/h=(257-97)10=16 P’=P1’+P2’=40+16=56 |
||||||||||||||||||
Required working limit load Pj | N | Pj1=1.25Pn1=1.25*643=803.75
Pj2=1.25Pn2=1.25*257=321.25 |
||||||||||||||||||
Spring material diameter d and spring diameter D | mm | According to P, and P value, select from table 12-2-19, and the relevant parameters are as follows:
|
||||||||||||||||||
Radial clearance of outer and inner springs δr | mm | δr=(D11-D02)/2≥(d1-d2)/2 δr=[(35-5)-(20+3)]/2≥(5-3)/2=3.5>1 |
||||||||||||||||||
Deformation under maximum working load Fn | mm | Fn=Pn*h/(Pn-P1)=16 Fn1=Fn2=Fn=16 |
||||||||||||||||||
Maximum working load of the selected spring Pn | N | Pn1≤0.8xPj≤0.8×850≤680 Pn2≤0.8xPj≤0.8×339.76≤272 |
||||||||||||||||||
Minimum working load of the selected spring P1 | N | P11=Pn1(Fn1-h)/Fn1=680(16-10)/16=255
P12=Pn2(Fn2-h)/Fn2=272(16-10)/16=102 |
||||||||||||||||||
Check working load P | N | Maximum working load (Pn=900) Pn1+Pn2=952>900 Minimum working load (P1=900) P11+P12=255+102=357>340 |
||||||||||||||||||
Single coil deformation under maximum working load fn | mm | fn1=0.8fj=0.8*5.903=4.72
fn2=0.8fj=0.8*3.398=2.72 |
||||||||||||||||||
Effective coils n | coil | n01=Fn1/fn1=16/4.72=3.38,take n=3.5 n02=Fn2/fn2=16/2.72=5.58,take n=6 |
||||||||||||||||||
Total coils n1 | coil | inner n1=n01+2=3.5+2=5.5
outer n1=n02+2=6+2=8 |
||||||||||||||||||
Actual deformation under maximum working load Fn | mm | Fn1=nfn1=3.54*4.72=16.52
Fn2=nfn2=6*2.72=16.32 |
||||||||||||||||||
Actual deformation under minimum working load F1 | mm | F11=Fn1*P11/Pn1=16.52*255/680=6.19
F12=Fn2*P12/Pn2=16.32*102/272=6.12 |
||||||||||||||||||
Deformation under ultimate working load Fj | Fj1=nfj=3.5*5.903=20.65
Fj2=nfj=6*3.398=20.40 |
|||||||||||||||||||
Pitch t | t1=d+fj=5+5.903=10.9
t2=d+fj=3+3.398=6.4 |
|||||||||||||||||||
Free height H0 | H01=nt1+1.5d=3.5*10.9+1.5*5=46
H02=nt2+1.5d=6*6.4+1.5*3=38 Inner spring needs to be padded, thickness =46-38=8mm |
|||||||||||||||||||
Actual spring stiffness p ‘ | P’1=P’d/n01=144/3.5=41
P’2=P’d/n02=100/6=16 P’1+P’2=40+16=57≈P’(56) |
|||||||||||||||||||
Winding ratio C | C1=D/d=35/5=7
C2=D/d=20/3=6.7 |
Note: As a professional custom spring manufacturer in China, we offer quality custom spring services as follow,